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a b s t r a c t

Designing an engineered structure of optimal performance is the ultimate goal of engineering design,
and various structural optimization approaches have been proposed. However, previous studies on
the topic mainly rely on the single design variable of Young’s modulus or density without considering
its Poisson’s ratio as another key isotropic material parameter, and thus may limit the best design
ultimately reached. In the study, the problem of free isotropic material optimization (FIMO) is studied
that takes as design variables both Young’s modulus and Poisson’s ratio at each point of the design
domain without constraints on its manufacturability; certain necessary conditions on the material
attainability are the only imposed requirements. Global optimum to the FIMO is achieved via rigorously
reformulating it as a second order cone programming, to which a global optimum is theoretically
verified and numerically trackable; the novel formulation also avoids the challenging singularity issue
on void elements. The material dimension of the resulted design can also be reduced to any prescribed
number of high fidelity via a hierarchical material clustering algorithm. The generated structure can
be taken as benchmark solutions with which other optimized designs can be compared, and to
propose novel new product design. Performance of the approach is tested on various 2D examples, in
comparison with structures generated via classical topology optimization.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Designing a structure of desirable optimal performance is
the ultimate goal of engineering and product design. It can be
achieved via structural optimization methods that find the opti-
mal geometric parameters or shapes or even topologies driven
by their associated physical properties, which approach is re-
spectively called parametric optimization, shape optimization
or topology optimization [1]. In particular, topology optimiza-
tion aims to find the best solid-void distribution within a dis-
crete design domain for improved structural performance. The
approaches have undergone tremendous development in the
last decades [1–5], and have produced various novel optimized
structures of extreme properties [6] and found wide industrial
applications [7,8].
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In traditional studies on topology optimization [2–4,9,10],
mainly Young’s modulus associated to each design element is
directly or implicitly taken as the design variable, ignoring other
important material parameters such as Poisson’s ratio or general
anisotropy. It thus may limit the performance that the optimized
structure can ultimately reach. Indeed, multi-scale topology op-
timization approaches have also been proposed that compute
an optimized microstructure to each macro-element [11–15],
which possesses a target homogenized material tensor so that
the macro-property of the final design can be further improved.
The approaches manifest the ultimate design target that the
designers aim to achieve, but in practice may encounter diffi-
culties in convergence control, tremendous computational efforts,
unconnected microstructures, or discontinuity between adjacent
microstructures, owning to its complexity in geometric control
and property analysis. Researchers have thus also devoted efforts
to separating the process as two consequent steps of first opti-
mizing material distribution within the macro-structure, which
is then to guide the microstructure design associated with each
macro-element. However, as the macro-structure is generally
optimized solely based on its Young’s modulus [4,16,17], perfor-
mance of the optimized design is generally not improved from

https://doi.org/10.1016/j.cad.2019.05.002
0010-4485/© 2019 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.cad.2019.05.002
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cad.2019.05.002&domain=pdf
https://doi.org/10.1016/j.cad.2019.05.002
https://doi.org/10.1016/j.cad.2019.05.002
mailto:liming@cad.zju.edu.cn
https://doi.org/10.1016/j.cad.2019.05.002


X. Yang and M. Li / Computer-Aided Design 115 (2019) 52–63 53

this embedding process, and the potentiality of the multiscale
optimization is not fully utilized.

In order to resolve this issue and to step further to designing
the ‘‘best’’ structure of extreme physical performance, a free
isotropic material optimization (FIMO) problem is studied here.
The material isotropy means that its elastic property (or specif-
ically its material tensor) is uniform in all orientations, repre-
sented using its Young’s modulus and Poisson’s ratio, which are
both taken as design variables in FIMO. The material is free in
the sense that the material tensor can vary at each point of the
design domain without constraints on its manufacturability; the
only imposed requirements on the material tensor are certain
necessary conditions on its attainability. The material distribution
is optimized to meet the design target. The generated structure
can be considered as the best structure among possible elastic
continua [18,19], and used as benchmark solutions with which
other structural designs can be compared and to stimulate novel
designs. In addition, the derived structure can also be used in
generating an optimal isotropic porous structure via embedding
associated microstructures, which is to be explored in our future
work.

Poisson’s ratio has an impressive effect in designing high-
stiffness composites, and has attracted research efforts on its
usage for further structural performance improvement. For in-
stance, Liu et al. found that the effective Young’s modulus of lam-
inated two-phase composites would exceed the Voigt estimation
or that of each individual constituent phase [20] when one of the
constituent phases is close to the thermodynamic limit. Signifi-
cant stiffness enhancement was also found when incorporating
negative Poisson’s ratio (NPR) inclusions into composites in [21].
Successive study was also conducted to investigate the influence
of Poisson’s ratio of constituent, or topologies of NPR inclusions,
in composites [22,23]. Recently, Long et al. found from numerical
results that the Poisson effect plays a key role in reducing the
mean compliance of the final design in multi-material composite
structures [24], and considering negative Poisson’s ratio results in
lower compliance than the single-scale optimization.

One main challenge of the FIMO problem comes from the
ultimate goal to numerically compute the global optima to the
originally nonlinear and non-convex optimization problem. We
show here that the use of the complementary energy can re-
formulate the problem as a second order cone programming
(SOCP) which has a theoretically proved global optimality. SOCP
is a special and important class of nonlinear numerical optimiza-
tion problems widely studied, and has special conic optimizer
MOSEK [25] and has been implemented in commercial optimiza-
tion software CPLEX [26]. It has also been studied in design
optimization for frame and trusses [27–32] but no solution for
general FE analysis was found before. Note that the FMO (Free
Material Optimization) problem [18,19,33–37], where all the ma-
terial elasticity tensor components are taken as design variables,
is usually formulated as a nonlinear semidefinite programming
(SDP) which is a hyperset of SOCP and is usually more challenging
to devise efficient numerical approaches. Compared to classic
topology optimization approaches [4,38], the FMO problem for-
mulated via SDP or the novel FIMO formulated via SOCP, has
another advantage that it does not involve any FEA computations
during optimization, by avoiding solving the original mechan-
ical equilibrium equations. It is thus easy to be implemented
and, in particular, naturally avoids the challenging singularity
issue caused by void elements involved in the FE analysis of the
design.

An inherent difficulty associated to the FIMO problem is the
attainability or manufacturability of the optimized material elas-
ticity tensors. It in fact has been proved that any positive definite
fourth order tensor, which satisfies the symmetries of an elastic-
ity tensor, is always attainable using a stiff enough material [39].

However, it still remains open to prescribe well-founded math-
ematical constraints so that the microstructure can be attained
for given candidate materials [37,40]. In practice, people tend
to utilize lower and upper bounds on the trace of the elasticity
tensor as constraints on the material resource, which is also
applied in this study. In addition, a material clustering approach is
also proposed in this study to reduce the material variety, which
is also able to help to ultimately produce a manufacturable struc-
ture with optimized performance and to reduce computational
costs of downstream tasks.

In summary, the novelty and contributions of the study in-
clude three main aspects. Firstly, the novel FIMO problem is
introduced and studied that includes Poisson’s ratio as design
variables to find the best isotropic structure. Secondly, the prob-
lem is rigorously reformulated as SOCP which has theoretically
proved global optima and well developed numerical approaches.
The novel SOCP formulation does not involve any FEA computa-
tion, and avoids the challenging singularity issue caused by void
elements. Thirdly, a hierarchical material clustering algorithm is
developed to reduce the design space to any prescribed number
of a high structural fidelity. The approach is tested on various 2D
examples and demonstrates high effectivity in comparison with
classical benchmark results.

The remainder of the paper is arranged as follows. The FIMO
problem is formulated in Section 2. Approaches to converting it
to an SOCP problem are detailed in Sections 3 and 4, and the
material clustering approach is explained in Section 5. After pre-
senting various 2D examples in Section 6, the paper is concluded
in Section 7.

2. Problem formulation

Given a linear elasticity analysis problem, the free isotropic
material optimization (FIMO) aims to find the optimal distribution
of a group of isotropic material tensors, in terms of their Young’s
modulus and Poisson’s ratios, within a design domain under cer-
tain boundary conditions, for which the structure is as effective
as possible. The widely studied problem of minimum compliance,
or equivalently maximum stiffness, is examined here.

To get a computationally tractable model, a finite element ap-
proximation is used. Suppose Ω = {Ωe, e = 1 . . .N} is a discrete
design domain consisting of N disjoint square FE elements Ωe of
the same size. The material is assumed to be constant within each
cell. Let Ee > 0, −1.0 < νe < 0.5 ∈ R be the associated Young’s
modulus and Poisson’s ratio to each element e = 1 . . .N , and
De(Ee, νe) the 2D material elasticity tensor defined via,

De(Ee, νe) =
E

1 − ν2

⎡⎢⎣1 ν 0
ν 1 0

0 0
1 − ν

2

⎤⎥⎦ , (1)

which is symmetric and positive semidefinite. We also define
E = (E1, . . . , EN ), ν = (ν1, . . . , νN ) and D = (D1, . . . ,DN ) for
simplicity. The trace of De(E0, ν0) is calculated by

Tr(De(E0, ν0)) =
E0(5 − ν0)
2(1 − ν2

0 )
. (2)

Following the classical FE analysis, the displacement function
in linear elasticity is approximated by a continuous function that
is bilinear in each coordinate on every element, whose coeffi-
cients are represented by a discrete vector u ∈ Rn. The free
isotropic material optimization (FIMO) problem is then stated
as: find the optimal distribution of material tensors D, or in
terms of its Young’s modulus E and Poisson’s ratio ν, so that the
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Fig. 1. Overview of the approach in solving free isotropic material optimization (FIMO) problem. The FIMO problem defined in (3) is first formulated as second
order cone programming (SOCP) in a new (P,Q ) space. The computed solution results in an globally optimal material distribution within the design domain. A
multi-material domain of any prescribed material number is also able to be obtained using a carefully designed hierarchical clustering algorithm.

compliance of the resulted structure is minimized, that is,

min
E,ν∈RN

c(u, E, ν), s.t. (3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K(E, ν)u = f, u ∈ U, equilibrium equation
N∑
i=e

Tr(De) ≤ mf T0, global trace constraints

Te ≤ Tr(De) ≤ Te, 1 ≤ e ≤ N, element trace constraints

ν0 < νe ≤ ν1, 1 ≤ e ≤ N, Poisson’s ratio range
where f is the exerted nodal force vector ignoring the structure
weight for simplicity, and u and U ⊂ Rd are the nodal displace-
ment vector and its admissible space, where certain Dirichlet
boundary conditions are prescribed.

In addition, Te and Te are the prescribed lower and upper
bounds for the trace Tr(De) of an element e. T0 is the global trace
for a reference structure fully filled with material of E0 = 1, ν0 =

0.3 as widely adopted in structural optimization, and mf > 0
is a prescribed material cost fraction. These traces are used to
described the ‘cost’ of the material [18,36]. ν0 and ν1 are the
prescribed range of Poisson’s ratio.

The global stiffness matrix K(E, ν) of a finite element structure
Ω with material distribution D(E, ν) is calculated by

K(E, ν) =

N∑
e=1

Ke(E, ν), Ke(E, ν) =

nG∑
k=1

BT
e,kDeBe,k, (4)

where Be,k is the strain–displacement matrix and nG is the num-
ber of Gaussian integration points, see e.g. [41]. Note that K and
Ke are all symmetric positive semidefinite.

The objective function c(u, E, ν) is the structure’s compliance
and calculated by

c(u, E, ν) =
1
2
uTK(E, ν)u =

N∑
e=1

1
2
uT
eKe(E, ν)ue, (5)

where ue is the displacement vector associated to an element e.
In the proposed approach, as illustrated in Fig. 1, the FIMO

problem is reformulated as SOCP via mapping the material space
of (E, µ) to another space defined by new parameters (P,Q ).
Performing the optimization in (P,Q ) space produces an optimal
continua with free isotropic material tensor. In the end, the
material space is greatly reduced if necessary via clustering the
derived materials into a small number of different materials.

3. Fundamentals of compliance minimization of continua

The SOCP is first introduced in this section. Then the FIMO
problem in Eq. (3) is reformulated into a form based on comple-
mentary energy, from which the SOCP formulation for the FIMO
problem is derived in Section 4.

3.1. Second order cone programming

In a second-order cone programming (SOCP), a linear objective
function is minimized over cone defined as the intersection of
an affine set and the product of second-order (quadratic) cones.
SOCPs are nonlinear convex problems which include linear and
(convex) quadratic programs as special cases, but are less general
than semidefinite programming (SDPs).

A second-order cone program (SOCP) is a convex optimization
problem of the form: find x such that

minx cTx
s.t. ∥Aix + bi∥2 ≤ cTi x + di, i = 1, . . . ,m

Fx = g,
where x ∈ Rn is the design variable, and the problem parameters
are c ∈ Rn, Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, F ∈ Rp×n, g ∈ Rp.

Convex quadratically constrained quadratic programs can also
be formulated as SOCPs by reformulating the objective function
as a constraint. Semidefinite programming subsumes SOCPs as
the SOCP constraints can be written as linear matrix inequalities
and can be reformulated as an instance of semidefinite program
using the Schur complement theorem. Further details on SOCP
are referred to [27,29].

The following fact about second-order cone constraint is to be
used later,

w2
≤ xy, x ≥ 0, y ≥ 0 ⇔ x + y ≥

 [
2w
x − y

]  . (6)

3.2. Decomposed formulation based on complementary energy

The FIMO problem in (3) is first reformulated based on com-
plementary energy in order to derive its SOCP formulation. A
SOCP for truss and frame was previously derived in [28,31,32],
constructed by Euler–Bernoulli beam elements. However, its ex-
tension to FE analysis is non-trivial, and is the first time derived
in this study.

Given the vector of external force f ∈ Rd, the complementary
energy theory tells the following fact: the compliance c of a
structure defined in (5) can also be determined as follows:

c = 2 sup
{
fTu −

1
2
uTKu | u ∈ Rd

}
, (7)
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where sup refers to a function supremum.
Performing singular value decomposition for Ke gives its five

non-zero eigenvalues {λel} and the corresponding eigenvectors
{bel} in the following form:

λ =

[
Ee(3 − νe)
6(1 − ν2

e )
Ee(3 − νe)
6(1 − ν2

e )
Ee

1 + νe

Ee
1 + νe

Ee
1 − νe

]T

(8)

and

[be1, be2, be3, be4, be5] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 1 −1
0 −1 −1 0 −1
1 0 −1 0 1
0 1 0 −1 −1

−1 0 0 −1 1
0 −1 1 0 1
1 0 1 0 −1
0 1 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (9)

Note here that {bel} are constant vectors. Accordingly, the stiff-
ness matrix Ke can be rewritten as

Ke =

5∑
l=1

kelbelbT
el, (10)

where

ke1 = ke2 =
Ee(3 − νe)
24(1 − ν2

e )
, ke3 = ke4 =

Ee
4(1 + νe)

,

ke5 =
Ee

8(1 − νe)
, (11)

and the global stiffness matrix is straightforwardly built,

K =

N∑
e=1

5∑
l=1

kelbelbT
el. (12)

Note that in the decomposed form of Eq. (12) the material pa-
rameters (E, ν) only appear in the scalar items kel, which is
deliberately designed for the following transformation.

Substituting Eq. (12) into Eq. (7), we have

c = 2 sup

{
fTu −

N∑
e=1

5∑
l=1

1
2
kel(bT

elue)2 | u ∈ Rd

}
. (13)

This is a convex quadratic optimization problem, which has the
following dual problem,

c = inf
wel,sel

{
2

N∑
e=1

5∑
l=1

wel | welkel ≥
s2el
2

, ∀e, l,
N∑

e=1

5∑
l=1

selbel = f

}
.

(14)

In the above formulation, the equality constraint corresponds
to the force-balance equation, and the inequality constraints are
satisfied with equalities at an optimal solution. Meanwhile, we1+

we2+we3+we4+we5 is equal to the complementary strain energy
stored in member e. Note in Eq. (14) that each bel is a constant
vector. Thus, if taking the variables kel ∈ R as independent
variables, the problem in Eq. (14) can be directly formulated as an
SOCP problem. Consequently, the FIMO problem in (3) becomes
an SOCP. However, each kel ∈ R in Eq. (14) is a nonlinear function
in terms of the material Young’s modulus and Poisson’s ratio
defined on each element member e, and formulating it as an SOCP
is a challenging task. The issue is to be addressed next.

4. Free isotropic material optimization as SOCP

4.1. Young’s modulus E as single design variable

We first study the simpler case that only Young’s modulus E
is taken as design variable, that is, given a fixed Poisson’s ratio
ν and material constraints, optimize the distribution of Young’s
modulus of each element over the design domain to minimize
the structural compliance.

In this case, the decomposition form of Eq. (10) is reduced to

Ke =

5∑
l=1

EeaelbelbT
el (15)

with

ae1 = ae2 =
3 − νe

24(1 − ν2
e )

, ae3 = ae4 =
1

4(1 + νe)
,

ae5 =
1

8(1 − νe)
. (16)

Accordingly, the inequality constraints in Eq. (14) becomes

welEe ≥
s2el
2ael

, e = 1, . . . ,N, l = 1, . . . , 5. (17)

From the facts of SOCP in Eq. (6), Eq. (17) is equivalently
rewritten as a cone constraint,

wel + Ee ≥

 [
wel − Ee√
2/aelsel

]  , e = 1, . . . ,N, l = 1, . . . , 5. (18)

Accordingly, the compliance minimization problem Eq. (3)
then becomes: find the design variables E, s,w,

min
E,s,w

N∑
e=1

5∑
l=1

wel, s.t. (19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wel + Ee ≥


⎡⎣ wel − Ee

√
2/aelsel

⎤⎦  , 1 ≤ e ≤ N, 1 ≤ l ≤ 5,

N∑
e=1

5∑
l=1

selbel = f,

N∑
e=1

Ee ≤ mf T0,

Ee ≤ Ee ≤ Ee, 1 ≤ e ≤ N,

(20)

where E is the vector of Young’s modulus, s = {sel, 1 ≤ e ≤

N, 1 ≤ l ≤ 5}, w = {wel, 1 ≤ e ≤ N, 1 ≤ l ≤ 5} are continuous
design variables, T0 is the reference global Young’s modulus, mf
is the material cost fraction, and Ee is bounded by the prescribed
values Ee, Ee. This gives an SOCP problem that is ready to solve.

4.2. Young’s modulus E and Poisson’s ratios ν as design variables

Formulating the problem (3) as an SOCP when both E and
ν are design variables is more challenging, and we achieve this
via introducing a novel bijection φ that maps the coefficients
of Young’s modulus and Poisson’s ratio in Eq. (11) as two new
independent variables. The details are explained below.

Consider the following bijection φ : (E, ν) → (P,Q )

(P, Q ) = φ(E, ν) =

(
E

4(1 + ν)
,

E
8(1 − ν)

)
, (21)

where E > 0, −1 < ν < 0.5.
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Fig. 2. Plots of the proposed bijection φ : (E, ν) → (P,Q ): (P, Q ) = φ(E, ν) =

(
E

4(1+ν) ,
E

8(1−ν)

)
where E > 0, −1 < ν < 0.5, as determined by classical elastic

mechanics. And φ−1
: (P, Q ) → (E, ν): (E, ν) = φ−1(P,Q ) =

(
16PQ
2Q+P , 2Q−P

2Q+P

)
. with P > 0, Q > 0, and 3

2 P − Q > 0.

This way, we have φ−1
: (P, Q ) → (E, ν) defined by

(E, ν) = φ−1(P,Q ) =

(
16PQ
2Q + P

,
2Q − P
2Q + P

)
(22)

with P > 0, Q > 0, and 3
2P − Q > 0.

Fig. 2 plots the mappings φ and φ−1 for an illustration. The
feasible regions of (E, ν) and of (P,Q ) are also respectively shown
in 3 for an illustration. As we can see, the nonlinear transforma-
tion maps a curved domain into a polygon.

Substituting Eq. (22) into Eq. (11) gives

ke1 = ke2 =
1
3
Pe +

1
3
Qe, ke3 = ke4 = Pe, ke5 = Qe. (23)

Owing to this transformation, instead of the nonlinear relation-
ship of (E, ν) in Eq. (11), a linear formulation is constructed based
on the new pair of design variables (P,Q ).

In order to give a straightforward SOCP formulation and an
optimization of higher computational efficiency, the five-item
representation in Eq. (23) is further reformulated as a problem
of seven variables based on Eqs. (9) and (10), which writes

Ke =

7∑
l=1

kP,Q
e,l bP,Q

el bP,Q
el

T
, (24)

where

kP,Q
e1 = kP,Q

e2 =
1
3
Pe, kP,Q

e3 = kP,Q
e4 = Pe,

kP,Q
e5 = Qe, kP,Q

e6 = kP,Q
e7 =

1
3
Qe,

and

bP,Q
= [be1, be2, be3, be4, be5, be1, be2]

= [bP,Q
e1 , bP,Q

e2 , bP,Q
e3 , bP,Q

e4 , bP,Q
e5 , bP,Q

e6 , bP,Q
e7 ].

(25)

Accordingly, the trace constraints in (3) are derived

Tr(De) =
Ee(5 − νe)

2(1 + νe)(1 − νe)
= 8Qe + 6Pe, (26)

T =

N∑
e=1

Tr(De) =

N∑
e=1

(8Qe + 6Pe). (27)

Poisson’s constraint νe ≤ νe ≤ νe becomes{
2(νe − 1)Qe + (νe + 1)Pe ≥ 0
2(νe − 1)Qe + (νe + 1)Pe ≤ 0 (28)

As we comment after Eq. (14), the inferior of the problem is
equal to the structural compliance. Thus, the objective of mini-
mizing the compliance c can instead be achieved by minimizing∑7

l=1 wel at the constraint specified in Eq. (14). Introducing the

key observation, the optimization problem (3) is rewritten in an
SOCP: find the design variables Pe,Qe, sel, wel

min 2
N∑

e=1

7∑
l=1

wel

s.t.

(a.1) we1 + Pe ≥

 [
we1 − Pe√

6 se1

] 
(a.2) we2 + Pe ≥

 [
we2 − Pe√

6 se2

] 
(a.3) we3 + Pe ≥

 [
we3 − Pe√

2 se3

] 
(a.4) we4 + Pe ≥

 [
we4 − Pe√

2 se4

] 
(a.5) we5 + Qe ≥

 [
we5 − Qe√

2 se5

] 
(a.6) we6 + Qe ≥

 [
we6 − Qe√

6 se6

] 
(a.7) we7 + Qe ≥

 [
we7 − Qe√

6 se7

] 
(e = 1, . . . ,N)

(b)
N∑

e=1

7∑
l=1

selbl = f

(c)
N∑

e=1

(8Qe + 6Pe) ≤ T

(d.1) Pe > 0,
(d.2) Qe > 0,

(d.3)
3
2
Pe − Qe > 0,

(e = 1, . . . ,N)
(e.1) 8Qe + 6Pe ≤ Te,
(e.2) 8Qe + 6Pe ≥ Te,

(e = 1, . . . ,N)
(f .1) 2(νe − 1)Qe + (νe + 1)Pe ≥ 0
(f .2) 2(νe − 1)Qe + (νe + 1)Pe ≤ 0

(e = 1, . . . ,N).

(29)

Global optimum of the SOCP is ready to solve. Once the optimized
solution {(Pe,Qe)} is obtained, the material distribution of Young’s
modulus and Poisson’s ratio can be derived from the mapping
φ−1

: (P, Q ) → (E, ν) directly. The unique mapping between
(E, ν) and (P,Q ) spaces ensures that a global optimal solution in
terms of (E, ν) can always be obtained.
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Fig. 3. Mapping between two feasible regions in two different design spaces,
where the curved isocontour is mapped straight-lines. A(0.86, 0.50), B(1.04,
0.10), C(0.33, −0.80), D(0.60, 0.50). A′(0.14, 0.22), B′(0.24, 0.15), C′(0.40, 0.02),
D′(0.10, 0.15).

Extending the proposed method to problems defined on other
types of mesh elements mainly depends on the decomposition
form of (12). It works well on 2D or 3D regular grids, specifi-
cally 2D square elements and regular triangle, 3D cubic elements
and regular tetrahedral elements. Its extension to other types of
general mesh elements are non-trivial.

5. Material space reduction via material clustering

The derived material distribution from the FIMO is almost dif-
ferent everywhere within the design domain. The great number of
material types is to be reduced to a prescribed number as small as
2 via clustering techniques as studied here. The challenge of ap-
plying the well-studied clustering techniques here is to maintain
high compliance fidelity of the generated structures. Performing
the hierarchical clustering method in the intermediate (P,Q )
space demonstrates nice performance on numerical examples,
and is finally adopted.

Hierarchical clustering groups data over a variety of scales by
creating a cluster tree or dendrogram. The tree is not a single set
of clusters, but rather a multilevel hierarchy, where clusters at
one level are joined as clusters at the next level. In the proposed
approach, the similarity between two material tensors is tested
via various different measures, and is ultimately defined by the
Euclidean distance in the (P,Q ) space. Based on this proximity,
different design elements are iteratively grouped into a binary,
hierarchical cluster tree. The final k-clusters are derived via cut-
ting the hierarchical tree into k clusters, and the corresponding
cluster center is decided by averaging the values of (P,Q )’s in
each cluster. Since the global and local material constraints are
all linear with respect to the design variables P and Q , they will
be preserved perfectly after clustering.

A nice property of the proposed clustering algorithm lies in
fact that the global trace constraint can be accurately preserved
within the clustering process, as further explained below. Sup-
pose the global trace of a continuous FIMO solution is T con,
according to (27), that is,

T con
=

N∑
e=1

Tr(Dcon
e ) =

N∑
e=1

(8Q con
e + 6Pcon

e ), (30)

where N is the number of design element, and (Pcon
e ,Q con

e ) are the
associated material parameters to an element e.

Suppose the N kinds of continuous materials are grouped into
k discrete clusters as Ξi, i = 1, . . . , k. According to the proposed
clustering strategy, the material parameters in (P,Q ) space of
each new cluster are defined by

Pclu
i =

1
|Ξi|

∑
e∈Ξi

Pcon
e , Q clu

i =
1

|Ξi|

∑
e∈Ξi

Q con
e , i = 1, . . . , k. (31)

Accordingly, the clustered material parameters (Pdis
e ,Q dis

e ) for
each element e ∈ Ξi are determined (Pdis

e ,Q dis
e ) = (Pclu

i ,Q clu
i ).

Consequently, the global trace of the new material distribution
after clustering is calculated as

T dis
=

N∑
e=1

Tr(Ddis
e )

=

N∑
e=1

(8Q dis
e + 6Pdis

e )

=

k∑
i=1

∑
e∈Ξi

(8Q dis
e + 6Pdis

e )

=

k∑
i=1

∑
e∈Ξi

(8Q clu
e + 6Pclu

e )

=

k∑
i=1

|Ξi| · (8Q clu
e + 6Pclu

e )

=

k∑
i=1

∑
e∈Ξi

(8Q con
e + 6Pcon

e )

= T con

(32)

which means the global trace constraint is accurately preserved.
We also test the performance of K-means clustering at various

similarity measure. K-means is the classical clustering approaches
aiming to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, which
ultimately results in a set of Voronoi cells. In the K-mean ap-
proach, the final clustering depends heavily on the initial cluster
seeds distribution generated by the k−means++ algorithm. In
practise, we select the best result that demonstrates the small-
est structural compliance after acceptable times of repeating.
More details on the performance of different material clustering
approaches will be further explained in Section 6.

6. Numerical experiments

The proposed approach has been implemented in MATLAB
R2017b, and run on a PC of Intel Core i7-9700 K of 3.6 GHz CPU
and 32 GB RAM. The SOCP problems are solved by calling CPLEX
12.8.0 from MATLAB through YALMIP. Its performance is tested
on various aspects using different examples of the same size
80 × 30 for ease of comparison. The first example in Section 6.1
is implemented to compare its effectivity in deriving optimized
structure against those derived by the classic topology optimiza-
tion, and the effect of Poisson’s ratio. The second example in
Section 6.2 tests its usage and performances in different load
cases. The third example in Section 6.3 tests performance of the
material clustering in terms of clustering number or algorithms.
In the end, results on various other examples are further reported
in Section 6.4. All the results of the classic topology optimization
are obtained without using filter since no filter is considered in
the proposed strategy for a fair comparison; the usage of filter
actually has ignorable effect on the topology optimization target.

The following notations will be used throughout this section.
Material constraints. A material at Young’s modulus E and

Poisson’s ratio is also called material (E, ν) for short. The material
trace for each design element is constrained by

Ω0
Te = [0, T 0

e ],

where T 0
e is the trace of the material (1, 0.3).

The examples were usually tested under different global ma-
terial costs mf ranging from 0.2 to 0.9 at a step of 0.1, and 0.95,
denoted mf ∈ [0.2 : 0.1 : 0.9, 0.95] for short.
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Table 1
Comparisons between different optimization approaches: SIMP-c from classical
topology optimization setting penal = 1 and Poisson’s ratio ν = 0.3, the SOCP
approach for different ranges of Poisson’s ratios. The global volume constraint
mf , defined in (3), is varied from 0.2 to 0.95.

Method SIMP-c Ours

mf ν

0.3 0.3 [0.1,0.4] [−0.2,0.4] [−0.99,0.49]

0.20 256.23 256.04 236.73 7.54% 227.67 11.08% 219.47 14.28%
0.30 181.65 181.51 168.49 7.17% 162.68 10.37% 157.43 13.27%
0.40 145.51 145.44 135.52 6.82% 131.39 9.66% 127.73 12.18%
0.50 124.95 124.94 116.86 6.46% 113.78 8.93% 111.09 11.09%
0.60 112.29 112.25 105.37 6.13% 103.04 8.20% 101.07 9.96%
0.70 104.16 104.12 98.05 5.83% 96.29 7.52% 94.84 8.91%
0.80 98.93 98.90 93.38 5.58% 92.05 6.93% 91.05 7.94%
0.90 95.71 95.69 90.55 5.37% 89.54 6.43% 88.88 7.12%
0.95 94.71 94.71 89.68 5.31% 88.77 6.27% 88.27 6.80%

Fig. 4. Problem definitions.

Four different kinds of ranges Ων of Poisson’s ratio ν are used:

Ωa
νe

= [0.3], Ωb
νe

= [0.1, 0.4],

Ωc
νe

= [−0.2, 0.4], Ωd
νe

= [−0.99, 0.49], (33)

satisfying Ωa
νe

⊂ Ωb
νe

⊂ Ωc
νe

⊂ Ωd
νe
. Note that Ωa

νe
is equivalent

to a fixed Poisson’s ratio of 0.3.
Benchmark. Two kinds of benchmarks are used in this section:

numerical results computed with classical topology optimization
approach SIMP [38] at a penalty power penal = 3, and its con-
tinuous version penal = 1, denoted SIMP-c. In both approaches,

Young’s modulus is allowed to vary within range [Emin, 1] (Emin =

0.13), and Poisson’s ratio is set 0.3.
Effectivity index. An effectivity index is defined to measure the

relative compliance variation to two different optimized struc-
tures,

r =
|c1 − c0|

c0
, (34)

where c0 and c1 are compliances of the two results.
In our experiments, the computation costs come from two

main tasks: assembling SOCP constraints in MATLAB taking about
30 s, and calling CPLEX to solve the associated SOCP taking
about 50∼60 s. A future code improvement is expected to further
improve the computational efficiency .

6.1. Overall performance in continuous material space

Effectivity of the FIMO solution in deriving optimal solution
is first tested and compared with those derived by the classic
topology optimization, under different cases for mf ∈ [0.2 : 0.1 :

0.9, 0.95], and ν ∈ Ωνe as defined in Eq. (33). The numerical
results are summarized in Table 1 and plotted in Fig. 5. The two
different cases of having or not Poisson’s ratio as design variables
are respectively studied below.

6.1.1. Optimization of young’s modulus
The test studies the degenerated case that only Young’s modu-

lus is taken as design variable, which corresponds to the case ν ∈

Ωa
νe

= [0.3]. The obtained results are shown in the third column
in Table 1, in comparison with SIMP-c in the second column.
The two results demonstrate very high compliance consistency,
and the proposed is always slightly better in having a smaller
compliance. The phenomenon may be explained from the fact
that a minimum value of Young’s modulus Emin is used in SIMP-c
to avoid the singularity case caused by void element while the
proposed does not need such special handling. The result on the
other hand also shows the global convergence of SIMP-c. The
obtained material distributions are also shown on the top of Fig. 5
for illustration.

Fig. 5. Performance of the approach at constraints of different ranges of Poisson’s ratios. Introducing Poisson’s ratio into design always results in a better structure
of smaller compliance than those obtained via using single variable of Young’s modulus. The top and bottom figures show distributions of the traces of material
tensors of the resulted solutions. Similar trace distributions are observed despite of different ranges of Poisson’s ratios.
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Fig. 6. Material solution distributions at different constraints of ranges of Pois-
son’s ratios or material cost mf . Each point represents an optimized elemental
material tensor in (E, ν) space, colored by the value of trace Tr(De(E, ν)).

6.1.2. Optimization of both Young’s modulus and Poisson’s ratio
The performance is tested at different ranges of Poisson’s

ratios, as depicted in Eq. (33), and summarized in Table 1 and
compared in Figs. 5 and 6. As can be observed from the results,
introducing Poisson’s ratio into design always results in a better
structure of smaller compliance than those obtained via only
taking Young’s modulus as design variable. We also observe that
the larger range Poisson’s ratio lies in, the better structure it
produces, which is consistent with our intuition. In addition, more
performance improvement was observed for a smaller global
material constraint mf , with effectivity indices ranging from 5%
to 15%. It is also interesting to note in Fig. 5 that the trace Te
distributions at different ranges of Poisson ratios have close shape
similarity despite of the different distributions of Poisson’s ratios,
demonstrating the approach’s stability and the importance of the
material trace.

Fig. 7. The specific distribution of Young’s modulus and Poisson’s ratio for the
optimized structure generated at mf = 0.6 and Ωd

νe
= [−0.99, 0.49] is given

in (a), (c) gives the derived three-material FIMO structure as compared with
structure from classical SIMP in (d). In (c) the elements in yellow indicate the
stiffest material, the blue the softest, and the green in between them. . (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

The distributions of material solution are also plotted in Fig. 6
in the plane of Poisson’s ratio and Young’s modulus within range,
where elements of negative Poisson’s ratios are widely observed.
It also shows the usage and effective NPR material in
design.

We also plot in Fig. 7 values of Young’s modulus and Poisson’s
ratio within the design domain for the solution at mf = 0.6 and
Ωd

νe
= [−0.99, 0.49], where Young’s modulus, positive and nega-

tive Poisson’s ratio are represented by red, blue and gray arrows,
scaled by their absolute values. The results are also compared
with those obtained via SIMP and the clustered three-material
structure in Fig. 7(c,d). It is very interesting to note that the
stiffest elements of the three structures, respectively elements
in red, yellow and black in Fig. 7(a),(b),(c), are located similarly.
However, the optimized structure generated from SIMP has many

Fig. 8. The compliances and effectivity indices of the tension problem for different load orientations θ = 0◦, 30◦, 45◦, 60◦, 90◦ under different values of material
costs mf .

Fig. 9. The optimized material distribution of the tension problem for different load orientations θ = 0◦, 45◦, 90◦ and values of material costs mf = 0.2. In each
subfigure, the left shows the solution material distributions, and the right gives distribution of Young’s modulus and Poisson’s ratio in the design domain.
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Fig. 10. The specific continuous and discrete material distributions of the half
MBB problem in (P,Q ), (E, ν) space, and their trace structures. The material
fraction mf = 0.6, and the target cluster number is set 10. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

interior support details to withstand the external loads while the

optimized FIMO structure seems to utilize elements of negative
Poisson’s ratio to withstand the external loads.

6.2. Performance of optimizing (E, ν) in different load cases

We test here the effect of the FIMO concept in improving
structural performance for the tension example in Fig. 4(b) at five
different load orientations: θ ∈ {0◦, 30◦, 45◦, 60◦, 90◦

}, where
material constraint mf = 0.2, Poisson’s ratio range is set by
Ωd

νe
= [−0.99, 0.49]. The results are summarized in Table 2 and

in Fig. 8 in comparison with SIMP-c, or case ν = 0.3. The material
distributions within the design domain and the E − ν space are
also shown in Fig. 9.

As we can see from the results, in case that the angle θ ̸= 0,
the introduction of Poisson ratio much improves the structural
compliance at a maximal effective index of 14.18%. On the other
hand, when θ = 0 the effectivity index has a maximal value of
5.52%. Furthermore, when θ ̸= 0 the effectivity index generally
tends to become larger as the material cost constraint mf be-
comes smaller. The case θ ̸= 0 has a vice versa performance. The
interesting phenomenon may be explained from the observation
that the element materials are much dispersive along the axis of
Poisson’s ratio when θ ̸= 0, as indicated in Fig. 9.

6.3. Material clustering

This section tests the effect of the proposed material clustering
technique using the half MBB problem in Fig. 4(a), respectively
the overall performance, cases of different cluster numbers, and
cases of different clustering techniques.

Fig. 11. Performance of the proposed hierarchical material clustering algorithm at different clustering numbers k and material cost fraction mf . They are compared
with benchmark results obtained from classical topology optimization approach SIMP and its continuous version SIMP-c. Here, the Effectivity index is defined in
Eq. (34), and the reference value c0 refers to the SOCP results.
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Fig. 12. Effectivity indices of other four clustering algorithms, tested at different cluster number k and material cost fraction mf . Results of the benchmark SIMP and
SIMP-c are shown by lines for references.

Table 2
Effectivity indices of the tension problem optimized under different load
orientations Ωνe and values of material costs θ .
mf θ

0◦ 30◦ 45◦ 60◦ 90◦

0.20 4.51% 12.24% 13.49% 13.99% 14.18%
0.30 4.62% 11.24% 12.36% 12.84% 13.07%
0.40 4.82% 10.28% 11.27% 11.75% 11.93%
0.50 4.97% 9.32% 10.22% 10.63% 10.80%
0.60 5.10% 8.42% 9.18% 9.54% 9.66%
0.70 5.22% 7.58% 8.20% 8.48% 8.55%
0.80 5.32% 6.85% 7.30% 7.51% 7.54%
0.90 5.52% 6.30% 6.59% 6.71% 6.69%

6.3.1. Overall performance
As explained in Section 5, dimension of the material space can

be reduced to a specified number via a hierarchical clustering in
the (P,Q ) space. The result is first shown in Fig. 10 for a material
fraction mf = 0.6, Poisson’s ratio range Ωd

νe
= [−0.99, 0.49], and

a target cluster number 10.
Fig. 10(a) shows the results in the continuous case, respec-

tively in (P,Q ) and (E, ν) spaces, where material point color
indicates the trace value. The derived multi-material solution is
shown in Fig. 10(b) both in (P,Q ) and (E, ν). The cluster center
of each group is highlighted in pink. The target compliance is
increasing slightly from 101.07 to 102.24 before and after cluster-
ing, demonstrating high physical fidelity. As can also be observed
from Fig. 10(b), the clustered groups are pretty dispersive in
the (P,Q ) space but not in the (E, ν) space, where material
points close to each other may belong to different cluster groups.
This demonstrates the effectivity and importance of conducting
clustering in the (P,Q ) space instead of in the (E, ν) space.

6.3.2. Effect of different clustering numbers
Performance of the approach is also tested at different clus-

tering numbers 2 ∼ 10, 15 and 20, a material fraction mf =

0.6, Poisson’s ratio range Ωd
νe

= [−0.99, 0.49]. They are also
compared with benchmark results of SIMP, SIMP-c, and the con-
tinuous SOCP results. The results are summarized in Fig. 11.

The clustered multi-material structures always demonstrate
close approximation to the SOCP solutions in all the cases, which
always tends to become better as the clustering number in-
creases. In addition, the resulted multi-material structures always

Fig. 13. Problem definition.

have a smaller (thus better) compliance than those obtained via
SIMP-c or SIMP, even at the simplest case of using 2 clusters. Such
ideally nice phenomenon is hard to achieve using other clustering
approach as we will see later. The nice phenomenon can also
be observed from plots of the effectivity indices in Fig. 11(b),
where the proposed FIMO clusters always have smaller value than
the other two reference approaches. The phenomenon becomes
clearer when the volume constraint becomes smaller and the
number of clusters becomes larger.

6.3.3. Effectivity of different clustering approaches
Four different clustering approaches were tested, each at a

cluster number k = 2, 3, 4, 5, 8, 9, 10, 15, 20, including the
agglomerative hierarchical clustering method in (E, ν) space, de-
noted fhc/(E,ν), and the K-means clustering under different dis-
tance measurements: the Euclidean distance of elasticity matrix
De, of stiffness matrix Ke, and of (E, ν), respectively denoted
fkm/De , fkm/Ke and fkm/(E,ν). The results are also compared with the
benchmark SIMP and SIMP-c results, and shown in Fig. 12. Note
here the higher the index, the worse the approach.

Looking through the nigh subgraphs in Fig. 12, none of the four
approaches are stable and acceptable for all material fractions
and different number of clusters. They may even have a much
larger value of effectivity indices than those of SIMP-c or SIMP.
In contrast, the proposed hierarchical clustering in (P,Q ) space is
always effective and stable, as has been explained in Section 6.3.2.

In addition, experiments show that the K-means approach
usually has difficulty in convergence and the results strongly
depend on the initial seeds. In particular, it becomes increasingly
unstable and unreliable as k becomes larger. The above results
take the best amongst 20-times experiments.
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Fig. 14. Results of half MBB in Fig. 4(a): SIMP, SIMP-c, optimizing (E, ν) by SOCP, and discrete structures for different cluster numbers k, mf = 0.6.

Fig. 15. Results of tension example in Fig. 4(b) of load orientation θ = 90◦: SIMP, SIMP-c, optimizing (E, ν) by SOCP, and discrete structures for different cluster
numbers k, mf = 0.6.

Fig. 16. Results of bridge example in Fig. 13(a): SIMP, SIMP-c, optimizing (E, ν) by SOCP, and discrete structures for different cluster numbers k, mf = 0.6.

Fig. 17. Results of the problem in Fig. 13(b): SIMP, SIMP-c, optimizing (E, ν) by SOCP, and discrete structures for different cluster numbers k, mf = 0.6.

6.4. Other examples

The approach’s performance was also tested for various other
examples: the half MBB in Fig. 4(a), the bridge in Fig. 13(a), the
tension example of θ = 90◦ in Fig. 4(b) and the example of
opposite loads in Fig. 13(b). All the four examples are under the
same global material constraint mf = 0.6 and Poisson’s ratio
range Ωd

νe
= [−0.99, 0.49]. Their numerical results are shown

in Figs. 14–17, including cases of SIMP, SIMP-c, the proposed
FIMO via SOCP, and the clustered results at a cluster number
k = 2, 3, 5, 10. Specific target compliance values are also given
below each subgraph. The proposed approach is very stable and
effective for all the tests in always achieving better design target
values, and high-fidelity discrete structures .

7. Conclusion

The study proposes a novel method solving a new struc-
tural design problem FIMO by simultaneously optimizing Young’s
modulus and Poisson’s ratio within a design domain. Based on
the proposed formulation of SOCP, global optimum is theoret-
ically achievable and the challenging singularity issue on void
elements is also avoided. Meanwhile, a discrete material cluster-
ing algorithm is developed to reduce the material dimension of
the resulted structure to any prescribed number, which shows
close performance fidelity to the continuous case. Performance
of the approach was tested on various 2D numerical examples
demonstrating that the approach can always achieve structures
of decent performances, using a reference result obtained via
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topology optimization, and demonstrating the high effectivity of
introducing (negative) Poisson’s ratio in structural design.

The present method is mainly limited to the computation
cost of the MATLAB code in assembling the SOCP constraints by
YALMIP and calling for CPLEX for high resolution problems, which
is to be optimized in our future study. In addition, an effective
approach to designing micro-structures of target material tensors
(isotropic or not) is very desirable so that the derived optimal
structures could be ultimately put into manufacturing. Further
extending the study to discrete structural designs or to handle
cases of large deformations and stress constraints also deserves
further research efforts.
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